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Near-infrared (NIR) transflectance spectra of Listeria innocua FH, Lactococcus lactis, Pseudomonas
fluorescens, Pseudomonas mendocina, and Pseudomonas putida suspensions were collected and
investigated for their potential use in the identification and classification of bacteria. Unmodified spectral
data were transformed (first and second derivative) using the Savitzsky-Golay algorithm. Principal
component analysis (PCA), partial least-squares discriminant analysis (PLS2-DA), and soft inde-
pendent modeling of class analogy (SIMCA) were used in the analysis. Using either full cross-validation
or separate calibration and prediction data sets, PLS2 regression classified the five bacterial
suspensions with 100% accuracy at species level. At Pseudomonas genus level, PLS2 regression
classified the three Pseudomonas species with 100% accuracy. In the case of SIMCA, prediction of
an unknown sample set produced correct classification rates of 100% except for L. innocua FH (77%).
At genus level, SIMCA produced correct classification rates of 96.7, 100, and 100% for P. fluorescens,
P. mendocina, and P. putida, respectively. This successful investigation suggests that NIR
spectroscopy can become a useful, rapid, and noninvasive tool for bacterial identification.
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INTRODUCTION

Near-infrared (NIR) spectroscopy (750–2500 nm) has become
a very popular technique for a wide range of analyses in various
industries (1–8). The utility of this technique arises mainly from
its ability to perform fast, accurate, nondestructive, and simul-
taneous measurements of chemical components in complex
sample matrices. Additionally, it can provide information about
structural and physical properties of biological materials.
Information present in near-infrared spectra originates in
overtone and combination vibrations of molecular groupings
such as O-H, N-H, C-H, and S-H bonds. Absorption bands
arising from these vibrations are typically very broad, leading
to spectra that often lack detailed structure and in which it can
be difficult to assign individual features to specific chemical
components. On the other hand, the spectra do contain signifi-
cant amounts of information that is obscured by the overlapping
nature of the specific absorption bands present. Improvements
in instrumentation and the increasing availability of chemometric
software (9–11) have contributed significantly to the tremendous

expansion of this technique. Multivariate (multiple wavelength)
data analysis tools and calibration techniques (e.g., principal
component analysis or partial least-squares regression) are often
employed to extract the desired chemical information from any
given spectral data set.

Bacterial identification and differentiation by mid-infrared
spectroscopy (2500-5000 nm) has been investigated since the
middle of the last century (12–16), but shortcomings in available
instrumentation led to the discontinuation of these studies for
several decades. The development of modern mid-infrared
spectroscopy (early 1970s), Fourier transform techniques, and
chemometrics together with advances in computer technology
gave a new impulse to this research field. In 1991, Naumann et
al. (17) reported that Fourier-transformed mid-infrared (FT-IR)
absorption spectra of microorganisms were highly specific,
fingerprint-like patterns that could be used for identification
purposes. The simplicity and versatility of Fourier transform
infrared spectroscopy make it a versatile technique for the rapid
differentiation, classification, identification, and large-scale
screening of microbes at the subspecies level. The potential of
FT-IR to detect spoilage in chicken has been investigated (18),
and results obtained suggest that accurate estimates of bacterial
loads can be calculated from measurements taken from the meat
surface. It is proposed by the authors that proteolysis is the main
indicator for the onset of spoilage when microorganisms have
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reached a concentration of 107 cfu g-1. Al-Qadiri et al. (19)
used FT-IR spectroscopy and multivariate analysis to detect
Pseudomonas aeruginosa and Escherichia coli inoculated into
bottled drinking water. Anodisc membrane filters were used to
isolate the bacteria, and the spectra acquired had sufficient
information to allow detection of pure cultures with the aid of
multivariate analysis.

More recently, the potential of NIR and multivariate tech-
niques to identify microbial species has been investigated. FT-
NIR measurements in conjunction with such multivariate
techniques such as principal component analysis (PCA) and soft
independent modeling of class analogy (SIMCA) of transformed
spectra in the region 5100-4400 cm-1 (1960-2272 nm)
enabled discrimination between certain bacterial species (E. coli
spp., Pseudomonas spp., Bacillus spp., Listeria innocua) (20).
Dubois et al. demonstrated that the use of near-infrared chemical
imaging cards operating in the spectral region of 1200–2350
nm possesses the specificity required to differentiate bacteria
on the basis of their NIR spectra (21). Lin et al. (22) reported
that visible and short-wave NIR spectral data combined with
PCA were capable of detecting changes in microbial loads in
chicken muscle once the total aerobic plate count (APC)
increased slightly above one log cycle; accurate (R ) 0.91, SEP
) 0.48 log cfu g-1) quantification of bacterial loads in chicken
muscle was achieved by these authors using a PLS-based
method. In fact, after 8 h, the APC was determined to be log10

(APC) ) 5.67. These data correlated well with additional work
done by Rodriguez-Saona et al. (23). Finally, Suthiluk et al.
(24) reported that prediction of bacterial contamination in
shredded cabbage was possible using near-infrared spectroscopy
in the short-wavelength region (700–1100 nm).

The long-term objectives of the work reported here were to
evaluate the feasibility of applying NIR spectroscopy and
multivariate data analysis to microbial identification in vivo and
thereby develop a rapid, nondestructive method to identify
microbes on food. This paper is the first in a planned series
that attempts to identify bacterial species suspended individually
in saline solution and in a mixture of species suspended in saline
solution and to repeat that work on food systems. In this initial
study, efforts focused on investigating the potential of NIR to
identify and enumerate Lactococcus lactis, Listeria innocua,
Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas
mendocina suspended in a saline solution.

MATERIALS AND METHODS

Growth Conditions and Sample Preparation. The following
bacterial cultures were obtained from the University College Dublin
(UCD) microbiological culture collection: L. lactis 3417, L. innocua
FH 2333, P. fluorescens 2088, P. putida 49128, and P. mendocina
(isolated from a beef carcass and identified using 16S DNA
sequencing). All bacteria were cultivated aerobically on tryptic soy
agar (TSA; CM0131, Oxoid, Basingstoke, U.K.). From each plate,
an isolated single colony was aseptically collected with a sterile
loop and suspended in 10 mL of brain heart infusion broth (BHIl
CM225, Oxoid). The bacteria were grown at 37 °C for 24 ( 2 h,
and 1 mL of each bacterial suspension was aseptically transferred
to 10 mL of maximum recovery diluent (MRD; CM0733, Oxoid).
This suspension was centrifuged (4000 rpm for 10 min at 4 °C) and
washed twice in MRD, yielding a concentrated (approximately 7.4
× 107 cfu/mL) working solution. This working solution was then
serially diluted (dilution factors 10-1, 10-2, 10-3, 10-4, 10-5, and
10-6) in MRD and kept at 8 °C for no longer than 10 min prior to
NIR measurements to minimize growth. Samples were then allowed
to equilibrate to room temperature (20 ( 3 °C) for about 10 min,
and NIR measurements were taken. A total of 418 samples were
analyzed (90 each of L. lactis 3417, L. innocua FH 2333, and P.
fluorescens 2088, 71 of P. mendocina, and 77 of P. putida).

Near-Infrared Spectroscopy. Visible and near-infrared transflec-
tance spectra (400–2498 nm) were recorded on a NIRSystems 6500
scanning monochromator (FOSS NIRSystems, Silver Spring, MD) fitted
with a sample transport module. Samples (0.1 mL) were placed in a
camlock cell fitted with a gold-plated backing plate (0.1 mm sample
thickness; part IH-0355-1). The backing plate is constructed with flanges
around its rim to produce the exact sample thickness specified; gaps in
this flange permit the egress of excess sample to the rear of the plate
during cell closure. Instrument control and initial spectral manipulation
were performed with WinISI II software (v1.04a; Infrasoft International,
Port Matilda, MD). Between samples, the sample cell components were
washed with ethanol (70% v/v) and rinsed with sterilized MRD solution.
Cells were dried using paper tissue. Bacterial suspensions were scanned
in duplicate with the camlock cell being rotated through 180° between
scans to minimize any possible effect due to settling. The mean of
these duplicate spectra was used in all subsequent calculations. Given
that the samples were in aqueous solution and fine temperature control
was not possible, the order of sample scanning was randomized with
respect to species, concentration, and day of scanning.

Chemometrics. Spectral (log 1/R) files were exported from WinISI
in NSAS format and then imported into The Unscrambler (v 9.2;
CAMO A/S, Oslo, Norway) for data analysis. Samples were
randomized and divided into two groups: a calibration group that
consists of two-thirds of the samples and a prediction group that
consists of the remaining one-third. Sample assignment to each group
was performed by selecting every third sample as a member of the
prediction group; remaining samples were assigned to the calibration
group. Random selection did not generate equal size groups,

Figure 1. Unmodified absorbance spectra of all bacterial suspensions.

Figure 2. Second-derivative spectra of bacterial suspensions (gap size
) 5 data points, two to the left and two to the right of the data point
transformed). The 700–1000 nm range has been enlarged for visual
purposes.
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necessitating minor manual adjustments to ensure that all dilution
factors, within each bacterial species, were well represented in both
the calibration and prediction sample sets. Preliminary analysis of
the calibration data set for unusual or outlying samples was
performed by PCA. SIMCA was used for predicting class member-
ship. In this work, five principal component models to describe each
bacterial species were developed using the calibration samples.
Models were developed for various wavelength ranges and using
raw, first-derivative, and second-derivative spectra. These five
models were then deployed simultaneously to classify the prediction
sample set.

Partial least-squares discriminant analysis (PLS2-DA) was used
to develop models to discriminate between bacterial species. PLS2-
DA is a version of PLS in which several Y-variables are modeled
simultaneously, thus taking advantage of possible correlations or
colinearity between Y-variables. The discriminant analysis approach
assumes that a sample has to be a member of one of the classes
included in the analysis. Each class is represented by an indicator
variable, that is, a binary variable with a value of 1 for members of
that class and 0 for nonmembers. By building a PLS2 model with

indicator variables as Y, it is possible to directly predict class
membership from the X-variables describing any given sample.
Model output is a predicted value for an unknown sample; in this
case, correct predictions ideally have a Y value of 1 for the bacterial
species being predicted and 0 for the other species. In practice, values
of g0.5 are interpreted as indicating membership of the group being
modeled with results e0.5 indicating nonmembership. All predicted
values are accompanied by a deviation that is an estimate of how
reliable the prediction is. Whereas data covering the visible and the
entire NIR wavelength region (400–2500 nm) were collected, models
were developed and validated using this complete range and a
number of subsets of that range. The most accurate models were
developed using the wavelength range 700-900 nm, and only these
models will be discussed in this paper. Spectral (log 1/R) data were
analyzed without modification and after the calculation of first and
second derivatives; these were calculated using the Savitzky-Golay
method (25) and involved a number of gap sizes as detailed below.
All calibrations were developed using full cross-validation.

Figure 3. (a) PCA of second-derivative transformed spectral data over the wavelength range 700–900 nm. (b) Eigenvalues for PC1 and PC2 for
second-derivative transformed spectral data over the wavelength range 700–900 nm.
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RESULTS AND DISCUSSION

Spectra. The near-infrared spectra of all bacterial suspensions
scanned are shown in Figure 1. These unmodified spectra show
almost identical patterns for all bacterial samples with strong
absorption bands around 1440 (O-H first overtone) and 1950
nm (O-H combination bands), which dominate the spectra.
Bands at these wavelengths correspond to the strongest water
absorption bands in the NIR region (absorption coefficients of
26 and 114 L mol-1 cm-1, respectively) (26). To the naked
eye, no discrimination between any of the bacterial species
present is possible. Spectral derivatization, especially second
derivatives, has the benefit of removing baseline sloping effects
and resolving overlapping absorption bands; second-derivative
spectra are shown in Figure 2. Features around 1440 nm have
now been resolved and show some additional structure but, not
surprisingly, absorption by water continues to be the main
feature.

PCA. PCA of the whole data set revealed that the best
separation, as judged by eye, between all of the bacterial species
was found using second-derivative transformed data in the
wavelength range 700-900 nm (Figure 3a). There were no
unusual or outlying samples detected, and all were therefore
used in subsequent chemometric analysis. Figure 3a reveals
that each bacterial species formed a well-defined cluster; P.s
mendocina and P. putida clustered closely together and sepa-
rately from all of the other species on the right-hand side, and
there was no visually detectable overlap between these two
clusters. L. lactis bacteria formed a discrete group in the lower,
central area of this figure, well-separated from all of the other
species. L. innocua FH clustered very close to P. fluorescens
in this two-dimensional representation, and some overlap of
these two species is apparent in Figure 3a. Principal component
1 separates P. mendocina and P. putida from the rest of the
organisms; principal component 2 separates L. lactis from the
other organisms. Models developed using visible or wavelength
range 400–900 nm were inferior to models developed using the
wavelength range 700–900 nm. Consequently, the contribution
of the visible range seems to be insignificant. The major outcome
of this preliminary data analysis step is that the bacterial
organisms studied form discrete and largely separate clusters.
This strongly suggests that differentiation between the different
species may be possible on the basis of their near-infrared
spectra. Given that the scanning order of the bacterial suspension
samples was fully randomized, this observed differentiation is
highly unlikely to be an artifact resulting from sample temper-
ature variations. Figure 3b is a graphical representation of
principal components 1 and 2; the highest eigenvalues are found
at 712, 742, 756, 828, 834, 848, 878, 882, and 898nm. This
region (700–900 nm) is dominated by the absorption (third
overtone) of hydrogen-bearing groups (-CH-, -OH-, and
-NH-). In particular, 712 nm corresponds to –CH3 absorption,
742 and 756 nm to CH2, CH, and H2O absorption, 828 nm to
–RNHR′ and –RNH2, 834 and 848 nm to RNHR′, and finally
878, 882, and 898 nm to CH3 absorption bands (27). Absorbance
at these wavelengths may correspond to the lipids that are largely
present in bacterial cell walls but are also present in all structural
elements of the cell. Due to the abundance of these substances
in all living cells and the variety of possible combinations of
different acyl arms and head groups, lipids can be highly species
specific (28). Many studies have employed the use of lipid
fingerprints for the taxonomic classification of bacteria (29, 30).

PCA was also performed to investigate the potential of NIR
to detect different concentration levels within each organism
for enumeration purposes. The whole data set for each bacterial

species was used individually, and the category variable was
the dilution factor. Unfortunately, PCA did not show any clear
clustering among the six different dilution factors. When the
score plots were studied carefully, it was evident that dilution
factor 6 was represented in the top right-hand corner of the score
plot and dilution factor 1 in the bottom left-hand corner. The
rest of the dilution factors, though, were spread evenly along
the whole plot, thus not allowing us to continue modeling as
the degree of error and the uncertainty would be too large to
proceed any further. One explanation for the separation of
dilution factor 1 and dilution factor 6 would be the fact that
dilution factor 6 (∼74 cfu/mL) would not contain enough
structural information compared to a very concentrated dilution
factor 1, resulting in the separation of the two in the score plots.
On the other hand, a PCA model of dilution factor 6 for all
bacterial species did separate the bacteria in clusters. The clusters
were not as tight as in higher concentration dilutions, but the
separation was present. For this reason all dilution factors were
used in the effort to discriminate between bacterial species. This
also explains why the clusters in Figure 3a and subsequent
figures are slightly dispersed. It is due to the presence of a large
concentration range within each bacterial data set.

PLS-DA. Six PLS loadings were judged to be optimal for
the PLS2-DA model developed using the calibration sample set
and second-derivative transformed spectral data in the wave-
length range 700–900 nm. Score plots associated with this model
showed clear clustering of the different bacterial organisms. The
score plot on loadings 1 and 2 clustered the bacterial species in
a similar manner to the score plot on components 1 and 2 for
data in this spectral range (Figure 3a). Although most of the
bacterial species were separated, L. innocua and P. fluorescens
clustered very closely together; examination of a rotated 3-D
score plot using higher order loadings revealed increased
separation between L. innocua and P. fluorescens (Figure 4).
The output of the PLS2-DA model is a series of regressions of
each bacterial organism against all of the others; a graphical
display of one such regression (separation of L. lactis from the
rest) produced using this model is shown in Figure 5; this is a
plot of predicted Y value for all prediction samples. The
prediction value is shown as a circular point. The vertical lines
around the point indicate the deviation, that is, whether the
prediction is reliable or not. All other bacterial organisms
showed similar separation from the other species. Correct
predictions have a Y value ofg0.5 for the bacterial species being
predicted and e0.5 for the other species. Evaluation of the
accuracy of these PLS2 models is made on the basis of errors
in identification and fall into one of two classes. False-negative
identifications refer to samples actually belonging to a class that
are not classified as such by the class model. False-positive
identifications relate to samples that do not belong to a given
class but are incorrectly identified as so belonging by the
relevant class model. All class models showed 100% correct
classification of class members (no false negatives); no false-
positive classifications were generated by the models for P.
fluorescens, P. mendocina, L. innocua, and L. lactis. The P.
putida model generated a single false-positive result, a single
P. mendocina sample being incorrectly predicted as P. putida
(Table 1). Deviations for the prediction samples are all very
similar, as shown by the magnitude of the error bars associated
with each sample.

SIMCA Classification. The highest correct classification
results for SIMCA were achieved using a second-derivative
transformation of spectral data; a summary of model perfor-
mance is shown in Table 2. Models for P. fluorescens, P.
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mendocina, P. putida, and L. lactis produced 100% correct
classification rates; in the case of L. innocua FH, the failure to
correctly classify 7 of 24 samples produced a correct classifica-
tion rate of only 77.4%. Models for L. innocua FH, L. lactis,
and P. putida did not produce any false-positive errors, but those

for P. mendocina and P. fluorescens did produce 4 and 22 false-
positive misclassifications, respectively. These misclassified
samples belonged to P. putida (P. mendocina model) and L.
innocua FH (P. fluorescens model), respectively.

Repetition of this classification study using all of the bacterial
samples or different randomly selected samples in the calibration

Figure 4. 3-D representation of PLS2-DA model of second-derivative transformed spectral data in the wavelength range 700–900 nm (loading 1 vs
loading 2 vs loading 3).

Figure 5. Prediction results for Pseudomonas fluorescens (PLS2-DA model, 700–900 nm wavelength range, and second-derivative transformed data).

Table 1. PLS2-DA Prediction Results (Second Derivative, 700–900 nm)

bacterium

samples
correctly
predicted % false negatives false positives

Listeria innocua 30 100.0 0 0
Lactococcus lactis 30 100.0 0 0
Pseudomonas fluorescens 30 100.0 0 0
Pseudomonas mendocina 19 100.0 0 0
Pseudomonas putida 18 100.0 0 1 (Ps. mend.)

Table 2. SIMCA Classification Results (Second Derivative, 700–900 nm)

bacterium
samples correctly

classified %
false

negatives
false

positives

Listeria innocua 24 77.4 7 0
Lactococcus lactis 30 100.0 0 0
Pseudomonas fluorescens 30 100.0 0 22
Pseudomonas mendocina 19 100.0 0 4
Pseudomonas putida 18 100.0 0 0
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and validation sample sets did not change the overall pattern
of SIMCA results. The main variation was a reduction in the
number of false-positive classifications when all samples were
used to create and validate a SIMCA model. This suggests that
the use of a greater number of samples of each bacterial species
and a smaller concentration range within each organism may
improve the accuracy and robustness of the SIMCA models
developed.

Chemometric Analysis of Pseudomonas Data. In the study
described above, discrimination between and classification of
bacterial species have been described. However, it may be that
this amalgamation of levels of differentiation prevents the
development of optimal models for separation of species that
belong to the same genus. For this reason, the spectral data
collected for the three Pseudomonas species was reanalyzed
separately to study how well chemometric analysis of NIR
spectral data could discriminate between them alone.

PLS-DA. Several wavelength ranges were investigated, but
the best discriminant model (using 10 PLS factors) was created
by Savitzky-Golay second-derivative transformed data over the
wavelength range 700–1100 nm. A discriminant scores plot
(Figure 6) reveals the clear separation between the bacterial
strains, although P. mendocina and P. putida are quite close in
this two-dimensional representation. Calibration performance
on the validation sample set produced a 100% correct clas-
sification rate for all models; no false-positive identifications

were made by any model. Graphical display of P. fluorescens
results is shown in Figure 7. P. putida and P. mendocina have
similar graphical displays.

SIMCA Classification. A principal component model to
describe each bacterial species was developed using the calibra-
tion sample sets and a number of wavelength ranges; best results
were again achieved using spectral data between 700 and 1100
nm (Table 3). Each model was generated using five principal
components. P. fluorescens revealed a correct classification rate
of 96.7%, whereas P. mendocina and P. putida achieved correct
classification rates of 100%. A feature of these models, however,
was the presence of some false-negative and false-positive
identifications; in the case of P. fluorescens, a low figure of
2.3% of samples were wrongly identified as belonging to none
(false negative) of the three strains, whereas 81.5% of P. putida
were wrongly identified as P. mendocina (false positive).

The objectives of this study were to evaluate the feasibility
of applying NIR spectroscopy to microbial identification and
enumeration in an isolated system and subsequently develop a
rapid nondestructive method to identify microbes isolated from
food systems. Analysis of spectral data has revealed very
promising results for discrimination and classification of
unknown samples. The highest prediction and classification
accuracies were achieved using second-derivative transformed
spectral data in the wavelength ranges 700–900 nm. Using a
confidence level of <1%, 100% correct prediction was achieved
at strain level (P. fluorescens, P. mendocina, and P. putida); in
addition, almost 100% correct prediction was achieved at species
level. SIMCA classification successfully discriminated between
bacteria but with a large number of false positives. Further work
to improve the sensitivity of the models is required.

In comparison to previous studies in this field, apart from
the fact that a different set of bacterial species was studied, the
spectra obtained and investigated cover the whole near-infrared
region (700–2495 nm); previously published work did not
include information below 1000 nm. Therefore, the models

Figure 6. PLS-DA score plot of second-derivative transformed data over
the wavelength range 700–1100 nm.

Figure 7. Prediction results for Pseudomonas fluorescens (PLS2-DA model, 700–1100 nm wavelength range, and second-derivative transformed data).

Table 3. SIMCA Classification Results (Second Derivative, 700–1100 nm)

bacterium
samples correctly

classified %
false

negatives
false

positives

Pseudomonas fluorescens 29 96.7 0 0
Pseudomonas mendocina 19 100.0 0 0
Pseudomonas putida 17 81.5 4 21
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created in this study (700–900 nm) were able to avoid the strong
water absorption bands. This finding correlates very well with
near-infrared studies investigating the potential to detect mi-
crobial contamination (22, 24), in wihch the same spectral region
was used to detect the changes in microbial loads in food
systems. In addition, by obtaining transflectance spectra of liquid
samples using a 0.1 mL cell with a gold background the impact
of water absorption was further reduced which allowed in vivo
bacterial detection and differentiation compared to previous
studies in which bacterial films were used to eliminate the effect
of water.

To conclude, the use of NIR spectroscopy and chemomet-
rics shows great potential for the identification and clas-
sification of bacterial species. Further experimental work
needs to be carried out so that this successful technique can
be tested on a food system and thereby develop a methodol-
ogy that utilizes the advantages of using NIR to detect and
differentiate bacteria.
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